This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

Wednesday, April 28, 2021

HOW DRIVE SHAFT WORK

 The Drive Shaft.



The drive shaft, or propeller shaft, connects the transmission output shaft to the differential pinion shaft. Since all roads are not perfectly smooth, and the transmission is fixed, the drive shaft has to be flexible to absorb the shock of bumps in the road. Universal, or "U-joints" allow the drive shaft to flex (and stop it from breaking) when the drive angle changes.

Drive shafts are usually hollow in order to weigh less, but of a large diameter so that they are strong. High quality steel, and sometimes aluminum are used in the manufacture of the drive shaft. The shaft must be quite straight and balanced to avoid vibrating. Since it usually turns at engine speeds, a lot of damage can be caused if the shaft is unbalanced, or bent. Damage can also be caused if the U-joints are worn out.


There are two types of drive shafts, the Hotchkiss drive and the Torque Tube Drive. The Hotchkiss drive is made up of a drive shaft connected to the transmission output shaft and the differential pinion gear shaft. U-joints are used in the front and rear. The Hotchkiss drive transfers the torque of the output shaft to the differential. No wheel drive thrust is sent to the drive shaft. Sometimes this drive comes in two pieces to reduce vibration and make it easier to install (in this case, three U-joints are needed).The two-piece types need ball bearings in a dustproof housing as center support for the shafts. Rubber is added into this arrangement for noise and vibration reduction.


The torque tube drive shaft is used if the drive shaft has to carry the wheel drive thrust. It is a hollow steel tube that extends from the transmission to the rear axle housing. One end is fastened to the axle housing by bolts. The transmission end is fastened with a torque ball. The drive shaft fits into the torque tube. A U-joint is located in the torque ball, and the axle housing end is splined to the pinion gear shaft. Drive thrust is sent through the torque tube to the torque ball, to transmission, to engine and finally, to the frame through the engine mounts. That is, the car is pushed forward by the torque tube pressing on the engine.

Tuesday, April 27, 2021

HOW U-Joint WORK ?

 

U- Joint:


Hooke's joint is a linkage that transmits rotation between two non parallel shafts whose axes are coplanar but not coinciding., and is commonly used in shafts that transmit rotary motion. It is used in automobiles where it is used to transmit power from the gear box of the engine to the rear axle.The driving shaft rotates at a uniform angular speed, where as the driven shaft rotates at a continuously varying angular speed.        

            A complete revolution of either shaft will cause the other to rotate through a complete revolution at the same time. Each shaft has fork at its end. The four ends of the two fork are connected by a centre piece, the arms of which rest in bearings, provided in fork ends. The centre piece can be of any shape of a cross, square or sphere having four pins or arms. The four arms are at right angle to each other.

When the two shafts are at an angle other than 180° (straight), the driven shaft does not rotate with constant angular speed in relation to the drive shaft: the more the angle goes toward 90° the jerkier the movement gets(clearly, when the angle β = 90° the shafts would even lock).

However, the overall average speed of the driven shaft remains the same as that of driving shaft, and so speed ratio of the driven to the driving shaft on average is 1:1 over multiple rotations.

The angular speed ω2 of the driven shaft, as a function of theangular speed of the driving shaft ω1 and the angle of the driving shaft φ1,is found using:

         

Components of Hooke’s Joint

Slip Joint in the Propeller Shaft:



 Hook Jointin the Propeller Shaft:


Monday, April 26, 2021

HOW INTERCOOLER WORKS

 HOW INTERCOOLER WORKS 







An intercooler is a heat exchanger that’s fitted between the engine’s super or turbo charger and the intake manifold. Its job is to absorb and dissipate the heat in the charge air in order to provide the engine with the coolest and most dense air possible.


Air has a mass or a weight that changes based on the temperature and pressure of the air. The lower the temperature – the higher the mass. The higher the pressure – the higher the mass. 

At 15 degrees Celsius and at sea level 1 litre of air weighs around 1.225 grams. Of that around 0.245 grams is oxygen – the stuff we want to cram into the engine.


In order to get more air, thus more oxygen into the engine, we either need to compress the intake charge (turbo or supercharging), cool the intake charge, or both!

This is where things get tricky because the process of compressing the air also heats it up, so we need to cool it before it makes its way into the engine.















Sunday, April 25, 2021

What is alternator and what works?

 What is alternator and what works?




An alternator is a type of electrical machine that converts mechanical energy into alternating electric energy.  Hence it is also called synchronous generators or AC generator.  If you have a car or a heavy and big vehicle, then if your headlights are slightly dimmed, and your car is not always starting.  And you are worried because what is the reason for this, then maybe the cause of alternator malfunction can also happen, because this small piece of machinery is very useful for you, which produces electricity from mechanical energy.




 Also, alternators also charge the battery of your vechiles while you are driving it.  If they are not working, then your battery will slowly die.  Your car needs a lot of power to start working, and if your battery is not getting recharged, then it will die easily very soon.  Therefore, the alternator has a very important function in a vechile.

STARTING SYSTEM: COMPONENTS AND WORKING PRINCIPLES

STARTING SYSTEM: COMPONENTS AND WORKING PRINCIPLES





The engine can’t “start” rotational movement on its own. It needs an electric motor to get it up to a minimal RPM to run, then the engine can run under its power. The starter is the biggest load on the vehicle's electrical system. We cannot simply run all that current through the ignition switch, in most systems a relay is used to activate the starter solenoid, and the starter solenoid itself acts as another relay to engage the starter motor (explained later). Before electric starters, automobile owners needed to crank the engine over themselves! This was not ideal for any kind of quick getaway.




The starter motor is an electric motor that rotates your engine to allow the spark and fuel injection systems to begin the engine's operation under its power. Typically, the starter is a large electric motor and stator coil mounted to the bottom (generally to one side) of the vehicle's transmission bell housing where it connects to the engine itself. The starter has gears that mesh with a large flywheel gear on the backside of the engine, which turns the central crankshaft. Because this is a lot of physical weight and friction to overcome, starter motors are generally powerful, high-speed motors and use an ignition coil to ramp up their power before engaging.


COMPONENTS OF STARTING SYSTEM


1. Battery

2. Ignition Switch

3. Neutral Safety Switch

4. Starter Relay

5. Battery Cables

6. Starter Motor




Starter motor parts

1. Starter Solenoid

2. Starter Motor

3. Starter Drive Pinion







Saturday, April 24, 2021

WHAT IS A TURBOCHARGER AND HOW DOES IT WORK?

 WHAT IS A TURBOCHARGER AND HOW DOES IT WORK?




A turbocharger is a device fitted to a vehicle’s engine that is designed to improve the overall efficiency and increase performance. This is the reason why many auto manufacturers are choosing to turbocharge their vehicles. The new Chevrolet Trax and Equinox are both offered with turbocharged engines and as time goes on, more and more vehicles will be fitted with them.

How does it work ?

A turbo is made up of two halves joined together by a shaft. On one side, hot exhaust gasses spin the turbine that is connected to another turbine which sucks air in and compresses it into the engine. This compression is what gives the engine the extra power and efficiency because as more air can go in the combustion chamber, more fuel can be added for more power.



Watch this video to understand it better




how gearbox manual transmission work

 Car Transmission system

manual transmission


The transmission system is a mechanism that transmits power from the engine to the driving wheels. It transmits power and torque through the clutch, gear-box, propeller shaft, a differential. By gearbox, it gives four, five or six different ratios of torque output to torque input.

           
          





Gear Box regulates speed, torque and direction of the vehicle. Torque output will be the inverse of the speed of the vehicle. If the engine is directly coupled to the driving axle, the engine speed might be very low. At starting a vehicle needs more torque and less speed. If the driver increase speed it needs less torque. Gear Box provides this transition very smoothly.

  



It provides the necessary holding variation between the engine and the road wheels.

Watch this video to understand it better